Basic Electrical, Electronics And Instrumentation Engineering: UNIT I: Electrical Circuits

Transmission And Distribution Of Electrical Energy

Trying to represent a practical power system where a lot of interconnections between several generating stations involving a large number of transformers using three lines corresponding to R, Y and B phase will become unnecessary clumsy and complicated.

TRANSMISSION AND DISTRIBUTION OF ELECTRICAL ENERGY


Single Line Representation of Power System

Trying to represent a practical power system where a lot of interconnections between several generating stations involving a large number of transformers using three lines corresponding to R, Y and B phase will become unnecessary clumsy and complicated. To avoid this, a single line along with some symbolical representations for generator, transformers substation buses are used to represent a power system rather neatly. For example, the system shown with three lines will be simplified to Figure 1.75 using single line.


As another example, an interconnected power system is represented in the self explained Figure 1.75.


 

Transmission of power

power generated in a power ilqmia od lliw station (hundreds of MW) is to be transported over a long distance (hundreds of of kilometers) to load centers to cater power to consumers with the help of transmission line and transmission towers as shown in Figure 1.77.


To give an idea, let us consider a generating station producing 120 MW power and we want to transmit it over a large distance. Let the voltage generated (line to line) at the alternator be 10 kV. Then to transmit 120 MW of power at 10 kV, current in the transmission line can be easily calculated by using power formula circuit (which you will learn in the lesson on A.C circuit analysis) for 3-phases follows:


Instead of choosing 10 kV transmission voltage, if transmission voltage were chosen to be 400 kV, current value in the line would have been only 261.5 A. So sectional area of the transmission line (copper conductor) will now be much smaller compared to 10 kV transmission voltage. In other words the cost of conductor will be greatly reduced if power is transmitted at higher and higher transmission voltage. The use of higher voltage (hence lower current in the line) reduces voltage drop in the line resistance and reactance. Also transmission losses is reduced. Standard transmission voltages used are 132 kV or 220 kV or 400 kV or 765 kV depending upon how long the transmission lines are.

Therefore, after the generator we must have a step up transformer to change the generated voltage (say 10 kV) to desired transmission voltage (say 400 kV) before transmitting it over a long distance with the help of transmission lines supported at regular intervals by transmission towers. It should be noted that while magnitude of current decides the cost of copper, level of voltage decides the cost of insulators. The idea is, in a spree to reduce the cost of copper one can not indefinitely increase the level of transmission voltage as cost of insulators will offset the reduction copper cost. At the load centers voltage level should be brought down at suitable values for supplying different types of consumers. Consumers may be (1) big industries, such as steel plants, (2) medium and small industries and(3) offices and domestic consumers. Electricity is purchased by different consumers at different voltage level. For example big industries may purchase power at 132 kV, medium and big industries purchase power at 33 kV or 11 kV and domestic consumers at rather low voltage of 230 V, single phase. Thus we see that 400 kV transmission voltage is to be brought down to different voltage levels before finally delivering power to different consumers. To do this we require obviously step down transformers.


Substations

Substations are the places where the level of voltage undergoes change with the help of transformers. Apart from transformers a substation will house switches (called circuit breakers), meters, relays for protection and other control equipment. Broadly speaking, a big substation will receive power through incoming lines at some voltage (say 400 kV) changes level of voltage (say to 132 kV) using a transformer and then directs it out wards through outgoing lines. Pictorially such a typical power system is shown in Figure 1.78 in a short of block diagram. At the lowest voltage level of 400 V, generally 3-phase, 4-wire system is adopted for domestic connections. The fourth wire is called the neutral wire (N) which is taken out from the common point of the star connected secondary of the 6 kV/400 V distribution transformer.


 

Some Important Components/Equipments in Substation

As told earlier, the function of a substation is to receive power at some voltage through incoming lines and transmit it at some other voltage through outgoing lines. So the most important equipment in a substation is transformer(s). However, for flexibility of operation and protection transformer and lines additional equipments are necessary.

Suppose the transformer goes out of order and maintenance work is to be carried out. Naturally the transformer must be isolated from the incoming as well as from the outgoing lines by using special type of heavy duty (high voltage, high current) switches called circuit breakers. Thus a circuit breaker may be closed or opened manually (functionally somewhat similar to switching on or off a fan or a light whenever desired with the help of a ordinary switch in your house) in substation whenever desired. However unlike a ordinary switch, a circuit breaker must also operate (i.e., become opened) automatically whenever a fault occurs or overl iding takes place in a feeder or line. To achieve this, we must have a current sensing device called CT (current transformer) in each line. A CT simply steps down the large current to a proportional small secondary current. Primary of the CT is connected in series with the line. A 1000 A/5 A CT will step down the current by a factor of 200. So if primary current happens to be 800 A, secondary current of the CT will be 4 A.

Suppose the rated current of the line is 1000 A, and due to any reason if current in the line exceeds this limit we want to operate the circuit breaker automatically for disconnection.

In Figure 1.79 the basic scheme is presented to achieve this. The secondary current of the CT is fed to the relay coil of an overcurrent relay. Here we are not going into constructional and operational details of a over current relay but try to tell how it functions. Depending upon the strength of the current in the coil, an ultimately an electromagnetic torque acts on an aluminum disc restrained by a spring. Spring tension is so adjusted that for normal current, the disc does not move. However, if current exceeds the normal value, torque produced will over come the spring tension to rotate the disc about a vertical spindle to which a long arm is attached. To the arm a copper strip is attached as shown Figure 1.80. Thus the arm too will move whenever the disk


The relay has a pair of normally opened (NO) contacts 1 and 2. Thus, there will exist open circuit between 1 and 2 with normal current in the power line. However, during fault condition in the line or overloading, the arm moves in the anticlockwise direction till it closes the terminals 1 and 2 with the help of the copper strip attached to the arm as explained pictorially in the Figure 1.29. This short circuit between 1 and 2 completes a circuit comprising of a battery and the trip coil of the circuit breaker. The opening and closing of the main contacts of the circuit breaker depends on whether its trip coil is energized or not. It is interesting to note that trip circuit supply is to be made independent of the A.C supply derived from the power system we want to protect. For this reason, we expect batteries along with battery charger to be present in a substation.

Apart from above there will be other types of protective relays and various meters indicating current, voltage, power etc. To measure and indicate the high voltage (say 6 kV) of the line, the voltage is stepped down to a safe value (say 110V) by transformer called potential transformer (PT). Across the secondary of the PT, MI type indicating voltmeter is connected. For example a voltage rating of a PT could be 6000 V/110 V. Similarly, Across the secondary we can connect a low range ammeter to indicate the line current.


Distribution System

Till now we have learnt how power at somewhat high voltage (say 33 kV) is received in a substation situation near load center (a big city). The loads of a big city are primary residential complexes, offices, schools, hotels, street lighting etc. These types of consumers are called LT (low tension) consumers. Apart from this there may be medium and small scale industries located in the outskirts of the city. LT consumers are to be supplied with single phase, 220 V, 40 Hz. We shall discuss here how this is achieved in the substation receiving power at 33 kV. The scheme is shown in Figure 1.81.


Power receive at a 33 kV substation is first stepped down to 6 kV and with the help of under ground cables (called feeder lines), power flow is directed to different directions of the city. At the last level, step down transformers are used to step down the voltage form 6 kV to 400 V. These transformers are called distribution transformers with 400 V, star connected secondary. You must have noticed such transformers mounted on poles in cities beside the roads. These are called pole mounted substations. From the secondary of these transformers 4 terminals (R, Y, B and N) come out. N is called the neutral and taken out from the common point of star connected secondary. Voltage between any two phases (i.e., R-Y, Y-B and B-R) is 400 V and between any phase and neutral is 230 V (= 400 √3). Residential buildings are supplied with single phase 230V, 50Hz. So individual are to be supplied with any one of the phases and neutral. Supply authority tries to see that the loads remain evenly balanced among the phases as far as possible. Which means roughly one third of the consumers will be supplied from R-N, next one third from Y-N and the remaining one third from B-N. The distribution of power from the pole mounted substation can be done either by (1) over headlines (bare conductors) or by (2) underground cables. Use of overhead lines a though cheap, is often accident prone and also theft of power by hooking from the line stake place. Although costly, in big cities and thickly populated areas underground cables for distribution of power, are used.

Basic Electrical, Electronics And Instrumentation Engineering: UNIT I: Electrical Circuits : Tag: : - Transmission And Distribution Of Electrical Energy