Transforms And Partial Differential Equations: UNIT IV: Fourier Transforms

Fourier Sine & Cosine Transforms

Examples

Transforms And Partial Differential Equations: UNIT IV: Fourier Transforms: Examples

FOURIER SINE & COSINE TRANSFORMS:

FOURIER COSINE TRANSFORM:

The infinite Fourier cosine transform of f (x) is defined by


The inverse Fourier cosine transform Fc [f(x)] is defined by


 

INVERSION FORMULA FOR FOURIER COSINE TRANSFORM

Let Fe(s) denote the F.C.T of f(x). Then


 

FOURIER SINE TRANSFORM:

The infinite Fourier sine transform of f(x) is defined by 

The inverse Fourier sine transform of F, [f(x)] is defined by 

 

INVERSION FORMULA FOR FOURIER SINE TRANSFORM


 


Properties of Fourier sine transform and Fourier cosine transform

1. Linear property


2. Modulation property :


 






III (a). Problems based on Fourier Cosine Transform

Formula:


Example 4.3.a(1) Find the Fourier cosine transform of


 


 

Example 4.3.a(3): Find the Fourier cosine transform of e -ax a > 0.

Solution:


 

Example 4.3.a(4): Find the Fourier cosine transform of the function 3e -5x +5e-2x


 

Example 4.3.a(5): Find the Fourier cosine transform of



Example 4.3.a(6):Find the Fourier cosine transform of f(x) = x.

Solution: We Know that,


Example 4.3.a(7):Find the Fourier cosine transform of e-ax cosax.

Solution: We Know that,



Example 4.3.a(8): Show that ex2/2 is self-reciprocal under Fourier cosine transform.

Solution :

We know that,


 

Example 4.3.a(9): Find the Fourier cosine transform of e-ax  sin ax.

Solution: We know that,



Example 4.3.a(10): Evaluate Fe [xn-1] if 0 < x < 1. Deduce that 1/x is self reciprocal under Fourier cosine transform.

Solution :


 

Example 4.3.a(11): Find the Fourier cosine transform of


 


 

Example 4.3.a(13): Find the Fourier cosine transform of e-a2x2 ̧

Solution: We know that,



III. (b) Problems based on Fourier cosine transform and its inversion formula.

Formula :



Example 4.3.b(1): Solve the integral equation



Example 4.3.b(2): Solve the integral equation



Example 4.3.b(3): Find the Fourier cosine transform of e- |x| 


Example 4.3.b(4): Find the Fourier cosine transform of e-ax, a 

 

III. (c) Problems Based on Fourier Sine Transform. [F.S.T]

Formula :

 

Example 4.3.c(1): Find the Fourier sine transform of


 

Example 4.3.c(2): Find the Fourier sine transform of


 

Example 4.3.c(3): Find the Fourier sine transform of


 

Example 4.3.c(4): Find the Fourier sine transform of 1/x

Solution: We know that,


 

Example 4.3.c(5): Find the Fourier sine transform of 3e-5x +5e-2x

Solution: We know that,


 

Example 4.3.c(6): Find the Fourier sine transforms of f (x) = e-ax

Solution: We know that,



Example 4.3.c(7): Find the Fourier sine transform of the function


 

Example 4.3.c(8): Find the Fourier sine transform of x n-1. Deduce that is 1/√x self reciprocal under Fourier sine transform.



 

III. (d) Problems based on Fourier sine transform and its inversion formula.

Formula :


Example 4.3.d(1): Find Fourier sine transform of e-ax a > 0 and 

 

Example 4.3.d(2): Find the Fourier sine transform of e-x  Hence 



 

Example 4.3.d(4): Solve the integral equation


 

III .(e) Problems based on properties of F.C.T AND F.S.T.

Example 4.3.e(1): (i) Find the Fourier cosine transform of 

 

Example 4.3.e(2):  Find the Fourier sine and cosine transformations of  xe-ax

Solution: (i) We know that,



Example 4.3.e(3): Find Fourier cosine transform of e –a2 x2 


Example 4.3.e(4): Find the Fourier sine transform of e-ax hence find the Fourier cosine transform of xe-ax 

Solution: We know that,


 

III (f) Problems based on Parseval's identity in F.S.T and F.C.T


 

Example 4.3.f(3): Using transform methods, evaluate 

Solution: Parseval's identity is


 


Example 4.3.f(5): Using Parseval's identity of the Fourier cosinetransform,Evaluates

Transforms And Partial Differential Equations: UNIT IV: Fourier Transforms : Tag: : Examples - Fourier Sine & Cosine Transforms